Lyapunov exponents
from the 1960s to the 2020s

Marcelo Viana

IMPA, Rio de Janeiro
A few recent books

Lyapunov stability

Consider the differential equation

$$x' = A(t)x + R(t, x), \quad R(t, 0) \equiv 0.$$ \hspace{1cm} (1)

The Lyapunov exponent function is defined by

$$\lambda(v) = \limsup_{t \to +\infty} \frac{1}{t} \log \|\Gamma(t)v\|,$$

where $t \mapsto \Gamma(t)$ is the fundamental solution of the linearized equation $x' = A(t)x$.

Lyapunov stability theorem, 1892

$\lambda(v) < 0$ for every v together with "Lyapunov regularity" implies that the constant solution $x(t) \equiv 0$ is exponentially stable for equation (1).
Consider the differential equation
\[x' = A(t)x + R(t, x), \quad R(t, 0) \equiv 0. \] (1)

The Lyapunov exponent function is defined by
\[\lambda(v) = \limsup_{t \to +\infty} \frac{1}{t} \log \| \Gamma(t)v \|, \]
where \(t \mapsto \Gamma(t) \) is the fundamental solution of the linearized equation \(x' = A(t)x \).

Lyapunov stability theorem, 1892
\[\lambda(v) < 0 \text{ for every } v \text{ together with “Lyapunov regularity” implies that the constant solution } x(t) \equiv 0 \text{ is exponentially stable for equation (1).} \]
Let ν be a probability measure on GL(d), such that $g \mapsto \log \|g^{\pm 1}\|$ are in $L^1(\nu)$. Let $(g_n)_n$ be independent random variables in GL(d), all with probability distribution ν. There exist numbers $\lambda^- (\nu)$ and $\lambda^+ (\nu)$, called extremal Lyapunov exponents, such that

$$\lim_{n \to \infty} \frac{1}{n} \log \|g_n \cdots g_1\| = \lambda^+ (\nu) \quad \text{and} \quad \lim_{n \to \infty} -\frac{1}{n} \log \| (g_n \cdots g_1)^{-1} \| = \lambda^- (\nu),$$

ν-almost surely. Moreover, $\lambda^- (\nu) \leq \lambda^+ (\nu)$. }

Marcelo Viana

Lyapunov exponents
Let ν be a probability measure on $\text{GL}(d)$, such that $g \mapsto \log \|g^\pm 1\|$ are in $L^1(\nu)$. Let $(g_n)_n$ be independent random variables in $\text{GL}(d)$, all with probability distribution ν.

Furstenberg–Kesten ergodic theorem, 1960

There exist numbers $\lambda_-(\nu)$ and $\lambda_+(\nu)$, called extremal Lyapunov exponents, such that

$$\lim_{n} \frac{1}{n} \log \|g_n \cdots g_1\| = \lambda_+(\nu)$$

and

$$\lim_{n} \frac{1}{n} \log \|(g_n \cdots g_1)^{-1}\| = \lambda_-(\nu)$$

ν-almost surely. Moreover, $\lambda_-(\nu) \leq \lambda_+(\nu)$.

Linear cocycles

Let \((M, \mu)\) be a probability space and \(f : M \to M\) be a measure-preserving map. A linear cocycle over \(f\) is a map \(F : \mathcal{V} \to \mathcal{V}\), where \(\pi : \mathcal{V} \to M\) is a finite dimension vector bundle, such that the diagram

\[
\begin{array}{ccc}
\mathcal{V} & \xrightarrow{F} & \mathcal{V} \\
\downarrow \pi & & \downarrow \pi \\
M & \xrightarrow{f} & M
\end{array}
\]

commutes, and whose action \(F_x : \mathcal{V}_x \to \mathcal{V}_{f(x)}\) on each fiber of \(\mathcal{V}\) is linear.
Linear cocycles

Let \((M, \mu)\) be a probability space and \(f : M \to M\) be a measure-preserving map. A linear cocycle over \(f\) is a map \(F : \mathcal{V} \to \mathcal{V}\), where \(\pi : \mathcal{V} \to M\) is a finite dimension vector bundle, such that the diagram

\[
\begin{array}{ccc}
\mathcal{V} & \xrightarrow{F} & \mathcal{V} \\
\pi \downarrow & & \downarrow \pi \\
M & \xrightarrow{f} & M
\end{array}
\]

commutes, and whose action \(F_x : \mathcal{V}_x \to \mathcal{V}_{f(x)}\) on each fiber of \(\mathcal{V}\) is linear.

Example

\(\mu = \nu^\mathbb{Z}\) a Bernoulli measure on \(M = \text{GL}(d)^\mathbb{Z}\), \(f : M \to M\) the left-translation (shift), \(\mathcal{V} = M \times \mathbb{R}^d\) a trivial vector bundle, and

\[F(g, \nu) = (f(g), g_0 \nu),\quad \text{where } g = (g_n)_n.\]
Assume that the functions $x \mapsto \log \| F_x^{\pm 1} \|$ are in $L^1(\mu)$ and $f : M \to M$ is invertible.

Oseledets multiplicative ergodic theorem, 1968

For μ-almost every $x \in M$, there are numbers $\lambda_1(x) > \cdots > \lambda_k(x)$, called Lyapunov exponents, and a splitting $\mathcal{V}_x = E^1_x \oplus \cdots \oplus E^k_x$ such that

$$\lim_{n \to \pm \infty} \frac{1}{n} \log \| F^n_x v \| = \lambda_j(x) \text{ for } v \in E^j_x.$$

Moreover, $F_x(E^j_x) = E^j_{f(x)}$ and $\lambda_j(x) = \lambda_j(f(x))$ at ν-almost every point.
Assume that the functions $x \mapsto \log \|F_x^{\pm 1}\|$ are in $L^1(\mu)$ and $f : M \to M$ is invertible.

Oseledets multiplicative ergodic theorem, 1968

For μ-almost every $x \in M$, there are numbers $\lambda_1(x) > \cdots > \lambda_k(x)$, called **Lyapunov exponents**, and a splitting $\mathcal{V}_x = E_{x}^{1} \oplus \cdots \oplus E_{x}^{k}$ such that

$$
\lim_{n \to \pm \infty} \frac{1}{n} \log \|F_x^n v\| = \lambda_j(x) \text{ for } v \in E_{x}^{j}.
$$

Moreover, $F_x(E_x^j) = E_{f(x)}^j$ and $\lambda_j(x) = \lambda_j(f(x))$ at ν-almost every point.

The heart of the proof is showing that μ-almost every orbit has Lyapunov regularity.
Let $f : M \rightarrow M$ be a diffeomorphism and $F = Df : TM \rightarrow TM$ be the derivative.

We call (f, μ) **non-uniformly hyperbolic** if the Lyapunov exponents of $F = Df$ are non-zero ν-almost everywhere.

Then there is a (measurable) hyperbolic dichotomy $T_x M = E_x^s \oplus E_x^u$, where

$$E_x^s = \bigoplus_{\lambda_j(x) < 0} E_x^j$$

and

$$E_x^u = \bigoplus_{\lambda_j(x) > 0} E_x^j.$$
Pesin stable manifold theorem, 1976

There is a measurable family of embedded smooth disks $W^{s}_{loc}(x)$ tangent to E_{x}^{s} at ν-almost every point and consisting of points that are forward-asymptotic to x.

Applying the theorem to the inverse f^{-1}, we get a corresponding statement for E_{x}^{u}.
There is a measurable family of embedded smooth disks $W^{s}_{loc}(x)$ tangent to E^{s}_x at ν-almost every point and consisting of points that are forward-asymptotic to x.

Applying the theorem to the inverse f^{-1}, we get a corresponding statement for E^{u}_x.

This is the starting point of one of the most fruitful areas of smooth dynamics, called Pesin (or non-uniform hyperbolicity) theory.

Question: How general is non-uniform hyperbolicity (almost everywhere non-vanishing Lyapunov exponents) among dynamical systems?
A diffeomorphism $f : M \to M$ is partially hyperbolic if there exists a continuous decomposition

$$T_x M = E^u_x \oplus E^c_x \oplus E^s_x$$

(defined at every point) which is invariant under the dynamics:

$$Df_x(E^*_x) = E^*_{f(x)} \text{ for all } * \in \{u, c, s\}$$

and ...
Partially hyperbolic dynamics

- E^s is uniformly contracting:

$$\|Df_x \mid_{E^s_x}\| \leq \lambda < 1$$

- E^u is uniformly expanding:

$$\|(Df_x \mid_{E^u_x})^{-1}\| \leq \lambda < 1$$

- E^c is “in between”:

$$\frac{1}{\lambda} \frac{\|Df_x(v^s)\|}{\|v^s\|} \leq \frac{\|Df_x(v^c)\|}{\|v^c\|} \leq \lambda \frac{\|Df_x(v^u)\|}{\|v^u\|}$$
Partially hyperbolic dynamics

- E^s is uniformly contracting:
 \[\| Df_x |_{E^s_x} \| \leq \lambda < 1 \]

- E^u is uniformly expanding:
 \[\| (Df_x |_{E^u_x})^{-1} \| \leq \lambda < 1 \]

- E^c is “in between”:
 \[\frac{1}{\lambda} \frac{\| Df_x(v^s) \|}{\| v^s \|} \leq \frac{\| Df_x(v^c) \|}{\| v^c \|} \leq \lambda \frac{\| Df_x(v^u) \|}{\| v^u \|} \]

Question: How often are the center (i.e. along E^c) Lyapunov exponents non-vanishing?
Examples of partial hyperbolicity

Fact: Partial hyperbolicity is an open property.
Examples of partial hyperbolicity

Fact: Partial hyperbolicity is an open property.

- Take $A \in \text{SL}(d, \mathbb{Z})$ whose spectrum intersects the interior, the boundary, and the exterior of the unit disk in \mathbb{C}. Then the *induced map* is partially hyperbolic:

 $$ f_A : \mathbb{T}^d \to \mathbb{T}^d, \quad \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d $$
Examples of partial hyperbolicity

Fact: Partial hyperbolicity is an open property.

- Take $A \in \text{SL}(d, \mathbb{Z})$ whose spectrum intersects the interior, the boundary, and the exterior of the unit disk in \mathbb{C}. Then the induced map is partially hyperbolic:

$$f_A : \mathbb{T}^d \to \mathbb{T}^d, \quad \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$$

- Let $f^t : M \to M, \ t \in \mathbb{R}$ be an **Anosov flow**: there is an invariant decomposition

$$T_x M = E^u_x \oplus \mathbb{R}X(x) \oplus E^s_x, \quad X = \text{associated vector field.}$$

Then the **time–1 map** f^1 is partially hyperbolic.
Examples of partial hyperbolicity

Fact: Partial hyperbolicity is an open property.

- Take $A \in \text{SL}(d, \mathbb{Z})$ whose spectrum intersects the interior, the boundary, and the exterior of the unit disk in \mathbb{C}. Then the induced map is partially hyperbolic:

 $$f_A : \mathbb{T}^d \to \mathbb{T}^d, \quad \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$$

- Let $f^t : M \to M$, $t \in \mathbb{R}$ be an Anosov flow: there is an invariant decomposition

 $$T_x M = E^u_x \oplus \mathbb{R}X(x) \oplus E^s_x, \quad X = \text{associated vector field.}$$

 Then the time–1 map f^1 is partially hyperbolic.

- Let $g : N \to N$ be Anosov. Then any isometry extension is partially hyperbolic:

 $$f : N \times \mathbb{T}^d \to N \times \mathbb{T}^d, \quad f(x, v) = (g(x), v + \omega(x)).$$
Smooth cocycles

Let \((M, \mu)\) be a probability space and \(f : M \rightarrow M\) be a measure-preserving map.

A smooth cocycle over \(f\) is a map \(\widetilde{\mathcal{F}} : \mathcal{E} \rightarrow \mathcal{E}\), where \(\pi : \mathcal{E} \rightarrow M\) is fiber bundle whose fibers are Riemannian manifolds, such that the diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\widetilde{\mathcal{F}}} & \mathcal{E} \\
\pi \downarrow & & \downarrow \pi \\
M & \xrightarrow{f} & M
\end{array}
\]

commutes, and whose action \(\widetilde{\mathcal{F}}_x : \mathcal{E}_x \rightarrow \mathcal{E}_{f(x)}\) on each fiber of \(\mathcal{E}\) is a diffeomorphism.
Let (M, μ) be a probability space and $f : M \to M$ be a measure-preserving map.

A smooth cocycle over f is a map $\tilde{F} : E \to E$, where $\pi : E \to M$ is fiber bundle whose fibers are Riemannian manifolds, such that the diagram

$$
\begin{array}{ccc}
E & \xrightarrow{\tilde{F}} & E \\
\downarrow \pi & & \downarrow \pi \\
M & \xrightarrow{f} & M
\end{array}
$$

commutes, and whose action $\tilde{F}_x : E_x \to E_{f(x)}$ on each fiber of E is a diffeomorphism.

Example

The projectivization $\tilde{F} : E \to E$ of a linear cocycle $F : V \to V$: the fibers $E_x = \mathbb{P}(V_x)$ and each \tilde{F}_x is the projectivization of the linear map F_x.
For \(z \in \mathcal{E} \) and \(v \) a tangent vector to the fiber at \(z \), the extremal Lyapunov exponents are

\[
\lambda_+(z, v) = \lim_{n \to \infty} \frac{1}{n} \log \| D\tilde{F}_z^n(v) \|.
\]

\[
\lambda_-(z, v) = \lim_{n \to \infty} -\frac{1}{n} \log \| D\tilde{F}_z^n(v)^{-1} \|.
\]

The limits exist \(m \)-almost everywhere if \(m \) is an \(\tilde{F} \)-invariant probability measure (Kingman subadditive ergodic theorem, 1968).

We are only interested in measures \(m \) that project down to \(\mu \) under \(\pi : \mathcal{E} \to M \).
Avila–Viana invariance principle, 2010

Let \mathcal{A} be a generating σ-algebra in M such that both f and $x \mapsto \mathcal{F}_x$ are \mathcal{A}-measurable. If $\lambda_-(z, v) \geq 0$ at m-almost every point then the disintegration $x \mapsto m_x$ of m along the fibers is \mathcal{A}-measurable.

Applying the theorem to the inverse, we get a dual statement when $\lambda_+(\mathcal{F}, z, v) \leq 0$.

This extends results of Furstenberg, Ledrappier and Bonatti–Viana for linear cocycles.
Let us go back to the partially hyperbolic setting:

\[f : M \rightarrow M \] with invariant splitting \(TM = E^s \oplus E^c \oplus E^u \).
Let us go back to the partially hyperbolic setting:

\[f : M \to M \text{ with invariant splitting } TM = E^s \oplus E^c \oplus E^u. \]

The center Lyapunov exponents of \(f \) are the numbers

\[\lambda(v^c) = \lim_{n \to \infty} \frac{1}{n} \log \| Df^n_x(v^c) \| \text{ of vectors } v^c \in E_x^c \]

They are well defined almost everywhere (Oseledets theorem).
Let us go back to the partially hyperbolic setting:

\[f : M \rightarrow M \text{ with invariant splitting } TM = E^s \oplus E^c \oplus E^u. \]

The center Lyapunov exponents of \(f \) are the numbers

\[\lambda(v^c) = \lim_{n \to \infty} \frac{1}{n} \log \| Df_x^n(v^c) \| \text{ of vectors } v^c \in E^c_x \]

They are well defined almost everywhere (Oseledets theorem).

Question: Can we always perturb \(f \) to make the center Lyapunov exponents non-zero?
Let $f_A : \mathbb{T}^4 \to \mathbb{T}^4$ be induced by some linear map $A \in \text{SL}(4, \mathbb{Z})$ with exactly two eigenvalues in the unit circle.

Basic facts:

- f_A preserves some (constant) symplectic form ω.
- f_A preserves volume.
- Assuming that no eigenvalue is a root of unit, f_A is ergodic.
Let $f_A : \mathbb{T}^4 \to \mathbb{T}^4$ be induced by some linear map $A \in \text{SL}(4, \mathbb{Z})$ with exactly two eigenvalues in the unit circle.

Basic facts:

- f_A preserves some (constant) symplectic form ω.
- f_A preserves volume.
- Assuming that no eigenvalue is a root of unit, f_A is ergodic.

F. Rodriguez-Hertz stable ergodicity theorem, 2005

Every volume-preserving diffeomorphism f close to f_A is ergodic.
Symplectic diffeomorphisms

In fact, f is **stably Bernoulli** among symplectic diffeomorphisms:

Avila, Viana stable Bernoulli theorem, 2010

Let $f : \mathbb{T}^4 \to \mathbb{T}^4$ be any ω-symplectic diffeomorphism close to f_A. Then:

- either f has all center Lyapunov exponents non-zero,
- or f is conjugate to f_A by a volume-preserving diffeomorphism.

In either case, f is ergodically equivalent to a Bernoulli shift.
In fact, f is stably Bernoulli among symplectic diffeomorphisms:

Avila, Viana stable Bernoulli theorem, 2010

Let $f : \mathbb{T}^4 \to \mathbb{T}^4$ be any ω-symplectic diffeomorphism close to f_A. Then:
- either f has all center Lyapunov exponents non-zero,
- or f is conjugate to f_A by a volume-preserving diffeomorphism.

In either case, f is ergodically equivalent to a Bernoulli shift.

The proof involves several applications of the invariance principle.
A different application of the invariance principle yields a direct proof that vanishing exponents can be disposed of, at least in some cases:

Let $f : M \to M$ be a partially hyperbolic, symplectic, C^k diffeomorphism having some periodic point.

Marín, 2016

Assume that f is accessible, center-bunched and pinched and the center bundle E^c is 2-dimensional. Then f is C^k-approximated by non-uniformly hyperbolic symplectic diffeomorphisms.
Many other important issues

- simplicity of the Lyapunov spectrum
- dependence of the Lyapunov exponents on the cocycle
- Schrödinger cocycles, random or quasi-periodic
- dynamics of group actions
- numerical analysis of Lyapunov exponents
- ...
Lyapunov exponents