From the d'Alembert paradox to the 1984 Kato criteria via the 1941 1/3 Kolmogorov law and the 1949 Onsager conjecture

Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann ,Piotr and Agneska Gwiadza , were motivated by the following issues:
The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and thestatistical theory of turbulence.

As a consequence.

I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.
Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conserva-tion of energy in a domain with boundary and the absence of anomalous energy dissipationin the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of noslip boundary condition.
Eventually the above results are compared with several forms of a basic theorem of Katoin the presence of a Lipschitz solution of the Euler equations and one may insist on thefact that in such case the the absence of anomalous energy dissipation isequivalenttothe persistence of regularity in the zero viscosity limit. Eventually this remark contributesto the resolution of the d’Alembert Paradox.

Technical Secretariat

logoGPBlanco Marià Cubí 4 - Pral
08006 Barcelona (SPAIN)
T. +34 932388777
F. +34 932387488
ICIAM2019 | All rights Reserved.